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Abstract
For regular canonical system of first order differential equations, we associate sym​metric linear relations. Also, we define the minimal and the maximal relations for this case and construct the generalized resolvents related to the selfadjoint extensions for these symmetric relations defined in Hilbert space H or larger than the given space H. One can construct the eigenfunction expansions for the systems we are interested in and the so-called Weyl-coefficients which are the main idea to construct the spectrum of the symmetric relations. We may illustrate this case by giving some examples.
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1. INTRODUCTION

We shall consider canonical systems of first order differential expressions regular on the compact interval [a,b]. For a given symmetric linear relation S in a Hilbert space H, the selfadjoint extensions of S can be characterized as restrictions of the adjoint S'* of S, when S is the minimal relation associated with a formally symmetric ordinary differential expression in L2-function space, then the restrictions involve linear combinations of the boundary values of the elements in the domain D(S*) of S*. When the selfadjoint extensions are canonical within the space H, the coefficients of these combinations can be taken to be constants. In the case of selfadjoint extensions in inner product spaces larger than the given space H, they depend analytically on a parameter, see [9], [11], and [18]. We shall prove that every generalized resolvent 
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where 
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is a holomorphic basis for the null space 
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 see [15], [16], and the spectrum of S can be constructed. Finally, we give examples; some in the classical
boundary value problem and the others are the general boundary value problem.

2. EIGENFUNCTION EXPANSIONS
Let A be a selfadjoint extension of S in a Krein space K, with nonempty resolvent set
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 and the definite and indefinite inner products on H and K, respectively, coincide on H. In the sequel we only consider selfadjoint extensions, whose resolvent sets are nonempty. By PH we denote the orthogonal projection of K onto H. We say that A or K is minimal if
[image: image14.wmf]}

)}

(

)

.{{(

.

.

1

H

A

K

A

s

l

c

K

È

Î

-

=

-

r

l

l

, where c.l.s. stands for closed linear span. The compressed resolvent
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See [1], [3], [6] and [24].

Theorem 2.1 The compressed resolvent 
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(a) 
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 is a holomorphic mapping with values in H and with domain of holomorphy DR, which is symmetric with respect to the real axis, 
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Proof. Let F(
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) ∈ L(N) have representation (2), then for λ ∈ ℂ \ ℝ
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implies that RλF ∈ L(N), λ ∈ ℂ \ ℝ. By (2.1) & (*)
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for λ ∈ ℂ \ ℝ, which shows that Rλ is a bounded operator in L(N). This proves (a) and (b) Combining (a) and (b), we obtain the identity

                                 R λ - 
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Property (c) can be written as 
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 EMBED Equation.3 [image: image32.wmf])

(

l

R

  (with equality if S is densely defined), where I is the identity on H. Because of (b), it is equivalent to 
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This completes the proof.

Theorem 2.2. If 
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Proof. According to Theorem 2.1, it is enough to see that the generalized resolvent 
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One can easily check that 
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Remark 1. Assume that A is a selfadjoint Hilbert space extension  
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where Σ is monotone nondecreasing function n x n on IR, and 
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 Z is a finite dimensional subspace in H2,Tmin is a minimal relation defined as in [22].

Theorem 2.3 The Fourier transform 
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Lemma 2.1. Let μ, be a matrix function of bounded variation. Define
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Where f is the unique absolutely continuous representative of  f. 

Then
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if either of the following two cases:

(a) H(t) = 0 a.e., in which case Z = span{ - Jμ, 0}, 
[image: image60.wmf]]

,

[

b

a

t

Î

, 

(b) 
[image: image61.wmf])

,

(

.

.

)

(

2

b

a

L

H

and

e

a

I

t

D

Î

=

D

 in which case Z == span {-Jμ,HJμ}

Proof. We just note {f,g} 
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From this it follows that
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where Z = span { -Jμ,0} if H(t) = 0, a.e., and where Z = span { - Jμ,HJμ} if 
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Theorem 2.4 Let μ  and S be defined as above, then S = Tmin 
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Proof. It is easy to check this proof using the previous lemma.

Remark 2. When 
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Remark 3. If 
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where Y(
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is a decomposition via Tmax
[image: image82.wmf].

+

Z when Tmax is further decomposed as in the above. 

So we note that


[image: image83.wmf]ï

ï

ï

ï

þ

ï

ï

ï

ï

ý

ü

=

+

-

+

+

-

-

=

-

+

+

+

-

-

=

=

)

:

0

(

}

,

{

)},

(

),

(

{

])

,

[

]

),

(

[

:

]

),

(

[

(

}

,

{

}),

)

(

),

(

{

:

)}

(

),

(

({

))

(

)

,

(

)]

(

,

[

)

,

(

2

1

:

)

,

(

(

)

)(

(

)

0

:

(

)

)(

(

0

0

I

s

s

U

Y

U

U

Y

Y

c

b

Y

Y

J

b

Y

b

Y

b

s

I

a

s

t

s

s

s

t

s

t

t

s

t

s

t

s

s

t

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l





(14)

Hence we obtain
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where the matrix S0, and the matrix Sz are
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In order to calculate the Weyl coefficient 
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With the usual decomposition U(
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Theorem 2.6. The Weyl coefficient ((
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where all of these matrices as defined before.

Proof. Just note that for a fixed 
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Theorem 2.7. Let A be a selfadjoint extension of Tmin ( Z*, with a finite dimensional extending space. Then the relation
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3. EXAMPLES
3.1. Consider the second order system in the form

-y"+qy= 
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which is equivalent to
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which can be written in the form Jz' = 
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In this simple example, one can write the boundary conditions in the form which have been repeated several times in the past, see [2], [3], [4], [5] and [16].

Now we shall consider the general case in a very simple way as one-dimensional vector case, and as we said in the research the coefficients which appear in the differential equations depend on the parameter which is in the lower or in the upper half plane. Let us consider this simple example and construct in each subcase the Nevanlinna function, see[7], [10] and [14].

3.2
iy’- 
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({P1y(0)+Q1y(1)}=g
P2y(0)+Q2y(1) - i(
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We shall assume that the real coefficients P1, P2, Q1 and Q2 can be written as (, (, ( and (;
furthermore, we put  (= 
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 fixed in each case.

3.3. Assume ( = 0. We get this system
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We assume the solution of this system (fundamental solution) in the form

y(t)=c(t)
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,   c(t) is a constant vector in Ck,   
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( C(,   t ( [0,1].

By simple calculation we get the solution and we can construct the Nevanlinna function, from it and even more we may study several cases and in each one construct the Nevanlinna function, see [12], [13] and [25].
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